f(x)=logsinx.
Then, f(x+h)=logsin(x+h)
⇒ddxf(x)=limh→0f(x+h)−f(x)h
⇒ddxf(x)=limh→0logsin(x+h)−logsin(x)h
=limh→0log(sin(x+h)sinx)h
=limh→0log(1+sin(x+h)sinx−1)h
=limh→0log(1+sin(x+h)−sinxsinx)h
=limh→0log(1+sin(x+h)−sinxsinx)h(sin(x+h)−sinxsinx)×[sin(x+h)−sinxsinx]
=limh→0log(1+sin(x+h)−sinxsinx)(sin(x+h)−sinxsinx)×[sin(x+h)−sinxh×1sinx]
=limh→0log(1+sin(x+h)−sinxsinx)(sin(x+h)−sinxsinx)×limh→0[2sinh/2×cos(x+h/2)h×1sinx]
=limh→0log(1+sin(x+h)−sinxsinx)(sin(x+h)−sinxsinx)×limh→0[sinh/2×cos(x+h/2)h/2×1sinx]
=1×cosx×1sinx
=cotx