wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate with respect to x from first principles f(x)=logsinx

Open in App
Solution

f(x)=logsinx.
Then, f(x+h)=logsin(x+h)
ddxf(x)=limh0f(x+h)f(x)h
ddxf(x)=limh0logsin(x+h)logsin(x)h
=limh0log(sin(x+h)sinx)h
=limh0log(1+sin(x+h)sinx1)h
=limh0log(1+sin(x+h)sinxsinx)h
=limh0log(1+sin(x+h)sinxsinx)h(sin(x+h)sinxsinx)×[sin(x+h)sinxsinx]

=limh0log(1+sin(x+h)sinxsinx)(sin(x+h)sinxsinx)×[sin(x+h)sinxh×1sinx]

=limh0log(1+sin(x+h)sinxsinx)(sin(x+h)sinxsinx)×limh0[2sinh/2×cos(x+h/2)h×1sinx]

=limh0log(1+sin(x+h)sinxsinx)(sin(x+h)sinxsinx)×limh0[sinh/2×cos(x+h/2)h/2×1sinx]

=1×cosx×1sinx
=cotx

flag
Suggest Corrections
thumbs-up
23
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiation under Integral Sign
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon