Let y=x2x2+1
On differentiating w.r.t x, we get
dydx=(x2+1)×2x−x2(2x+0)(x2+1)2
dydx=2x3+2x−2x3(x2+1)2
dydx=2x(x2+1)2
Hence, the value is 2x(x2+1)2.
Differentiate the following functions with respect to x :
x2−x+1x2+x+1