wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate with respect to x.
xcosx+sinxtanx

A
xcosx[cosxxsinx]+sinxtanx[1+sec2x.logsinx]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
xcosx[cosxxsinx.logx]+sinxtanx[1+sec2x.logsinx]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
xcosx[cosxsinx.logx]+sinxtanx[1+secx.logsinx]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B xcosx[cosxxsinx.logx]+sinxtanx[1+sec2x.logsinx]
let y=xcosx+sinxtanx
let h=xcosx ddx(f(x)g(x))=f(x)g(x)+f(x)f(x)
applying log on both sides we get
logh=cosxlogx
differentiate on both sides wrt x
1hdhdx=sinxlogx+cosxx
dhdx=xcosx(cosxxsinxlogx)
let t=sinxtanx
applying log on both sides
1tdtdx=sec2xlog(sinx)+tanxsinx(cosx)
dtdx=sinxtanx(1+sec2xlog(sinx))
y=h+t
dydx=dhdx+dtdx
dydx=xcosx(cosxxsinxlogx)+sinxtanx(1+sec2xlog(sinx))

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Animal Tissues
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon