wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate with respect to x, y=sin1(2x+13x1+(36)x)

Open in App
Solution

Let u=2x+13x1+36x
dudx=(1+36x)ddx(2x+13x)(2x+13x)ddx(1+36x)(1+36x)2 using quotient rule of differentiation
=(1+36x)2{ddx(2x3x)}2(2x3x){ddx(1+36x)}(1+36x)2
=(1+36x)2{2x3xlog2+2x3xlog3}2(2x3x)36xlog36(1+36x)2
=2.2x3x[(1+36x)(log2+log3)36xlog36](1+36x)2
=2x+13x[(1+36x)(log2+log3)36xlog36](1+36x)2
=2x+13x[log6+36xlog6236xlog6](1+36x)2
=2x+13x[log636xlog6](1+36x)2
dudx=2x+13x[136x]log6(1+36x)2
y=sin1u
dydu=11u2
Using chain rule, we get
dydx=dydu×dudx
=11u2×2x+13x[136x]log6(1+36x)2
=1 1(2x+13x[136x]log6(1+36x)2)2×2x+13x[136x]log6(1+36x)2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon