Let u=2x+13x1+36x
⇒dudx=(1+36x)ddx(2x+13x)−(2x+13x)ddx(1+36x)(1+36x)2 using quotient rule of differentiation
=(1+36x)2{ddx(2x3x)}−2(2x3x){ddx(1+36x)}(1+36x)2
=(1+36x)2{2x3xlog2+2x3xlog3}−2(2x3x)36xlog36(1+36x)2
=2.2x3x[(1+36x)(log2+log3)−36xlog36](1+36x)2
=2x+13x[(1+36x)(log2+log3)−36xlog36](1+36x)2
=2x+13x[log6+36xlog6−236xlog6](1+36x)2
=2x+13x[log6−36xlog6](1+36x)2
∴dudx=2x+13x[1−36x]log6(1+36x)2
y=sin−1u
⇒dydu=1√1−u2
Using chain rule, we get
dydx=dydu×dudx
=1√1−u2×2x+13x[1−36x]log6(1+36x)2
=1
⎷1−(2x+13x[1−36x]log6(1+36x)2)2×2x+13x[1−36x]log6(1+36x)2