wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate x cos x by first principle.

Or

Evaluate limy0(x+y) sec (x+y)x sec xy

Open in App
Solution

Let f(x) = x cos x, then f (x + h) = (x + h) cos (x + h)

f(x)=limh0f(x+h)f(x)h

=limh0(x+h) cos (x+h)x cos xh

=limh0x cos (x+h)x cos x+h cos (x+h)h

=limh0x[cos(x+h)cos x]h+limh0h cos (x+h)h

[ cos Ccos D=2 sinC+D2. sin CD2]

=limh02 x sin(x+h+x2) sin (x+hx2)h+limh0 cos (x+h)

=limh02 x sin (2x+h2) sin (h2)h+limh0 cos (x+h)

=limh0xsin(x+h2)×limh0sin h2h2+limh0 cos (x+h)

=x sin x×1+cos x [ limh0sin hh=1]

= cos x - x sin x

Or

We have, limy0(x+y) sec (x+y)x sec xy

=limy0x+ycos(x+y)xcos xy

=limy0(x+y)cos xxcos(x+y)y cos (x+y) cos x

=limy0x cos xx cos (x+y)+y cos xy cos (x+y) cos x

=limy0x[cos xcos(x+y)]y cos (x+y)cos x+limy0y cos xy cos (x+y) cos x

=limy02x sin(x+x+y2) sin (xx+yx2)y cos (x+y) cos x+limy01cos(x+y)

[ cos Ccos D=2 sin(C+D2) sin (DC2)]

=limy02 x sin (1+y2) sin y2y cos (x+y) cos x+limy01cos (x+y)

=limy0x sin(x+y2)cos (x+y) cos x×limy0 siny2y2+limy0 1cos(x+y)

=x sin xcos x.cos x×1+1cos x [ limy0sin hh=1]

= x sec x tan x + sec x


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon