Differentiate x cos x by first principle.
Or
Evaluate limy→0(x+y) sec (x+y)−x sec xy
Let f(x) = x cos x, then f (x + h) = (x + h) cos (x + h)
∴ f′(x)=limh→0f(x+h)−f(x)h
=limh→0(x+h) cos (x+h)−x cos xh
=limh→0x cos (x+h)−x cos x+h cos (x+h)h
=limh→0x[cos(x+h)−cos x]h+limh→0h cos (x+h)h
[∵ cos C−cos D=−2 sinC+D2. sin C−D2]
=limh→0−2 x sin(x+h+x2) sin (x+h−x2)h+limh→0 cos (x+h)
=limh→0−2 x sin (2x+h2) sin (h2)h+limh→0 cos (x+h)
=limh→0−xsin(x+h2)×limh→0sin h2h2+limh→0 cos (x+h)
=−x sin x×1+cos x [∵ limh→0sin hh=1]
= cos x - x sin x
Or
We have, limy→0(x+y) sec (x+y)−x sec xy
=limy→0x+ycos(x+y)−xcos xy
=limy→0(x+y)cos x−xcos(x+y)y cos (x+y) cos x
=limy→0x cos x−x cos (x+y)+y cos xy cos (x+y) cos x
=limy→0x[cos x−cos(x+y)]y cos (x+y)cos x+limy→0y cos xy cos (x+y) cos x
=limy→02x sin(x+x+y2) sin (xx+y−x2)y cos (x+y) cos x+limy→01cos(x+y)
[∵ cos C−cos D=2 sin(C+D2) sin (D−C2)]
=limy→02 x sin (1+y2) sin y2y cos (x+y) cos x+limy→01cos (x+y)
=limy→0x sin(x+y2)cos (x+y) cos x×limy→0 siny2y2+limy→0 1cos(x+y)
=x sin xcos x.cos x×1+1cos x [∵ limy→0sin hh=1]
= x sec x tan x + sec x