Differentiate xex using first principle.
Let f(x)=xex, then f(x+h)=(x+h)ex+h
∴ f′(x)=limh→0f(x+h)−f(x)h
= limh→0 (x+h)ex+h−xexh=limh→0 xex+h−xex+hex+hh
= limh→0 xex(eh−1)h +limh→0 hex+hh
= xex+ex [∵ limh→0 eh−1h=1]
= ex(x+1)
Differentiate sin xx using the first principle.
Differentiate the following functions using first principle:
f(x)=lnx
(i) If f(x)={x−|x|xif x≠02if x=0, show that limx→ 0 f(x) does not exist.
(ii) Evaluate limx→ 0 sin x−2 xin 3x+sin 5xx.
Or
(i) Find the derivative of (x−1)(x−2)(x−3)(x−4).
(ii) Differentiate xex by using first principle.