Let ,y=1abtan−1(batanx)
Differentiate with respect to x
dydy=1abddxtan−1(batanx)
=1ab×11+(batanx)2ddx(batanx)
=1ab×11+(batanx)2baddx(tanx)
=1ab×a2a2+(btanx)2basec2x
dydx=1a2+b2tan2xsec2x
dydx=sec2xa2+b2tan2θ
Differentiate with respect to x y=sec(tan√x)