Differentiate y=sinxsinxsinx....∞
y=sinxsinx...∞
y=sinxy
lny=ylnxsinx
Differentiating wrt x
lny=ylnx
⇒y′y=ycosxxsinx+y′lnx
y′=y2xtanx+y′ylnxsinx
y′=y2xtanx(1−y)lnx=y2tanx1−ylnxsinx=y2cotx1−ylnxsinx
If y=cesin−1x, then corresponding to this the differential equation is