wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate y=tan1(1+sinx+1sinx1+sinx1sinx) with respect x.
(1) When 0<x<π2
(2) When π2<x<π

Open in App
Solution

We know that,
1+sinx=sin2x2+cos2x2+2sinx2cosx2
=(cosx2+sinx2)2
=cosx2+sinx2
=cosx2+sinx2 for 0<x<π

And
1sinx=sin2x2+cos2x22sinx2cosx2
=(cosx2sinx2)2
=cosx2sinx2

1sinx=cosx2sinx2,if 0<x<π2sinx2cosx2,if π2<x<π

Thus,
Case 1: when 0<x<π2
y=tan1⎢ ⎢ ⎢ ⎢(cosx2+sinx2)+(cosx2sinx2)(cosx2+sinx2)(cosx2sinx2)⎥ ⎥ ⎥ ⎥
=tan1(cotx2)
=tan1[tan(π2x2)]
=π2x2
dydx=12

Case 2: when π2<x<π
y=tan1⎢ ⎢ ⎢ ⎢(cosx2+sinx2)+(sinx2cosx2)(cosx2+sinx2)(sinx2cosx2)⎥ ⎥ ⎥ ⎥
=tan1(tanx2)
=x2
dydx=12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon