Differentiation of ddx(sin−1(1−x21+x2)) equals, if 0<x<1 :
Let y=sin−1(1−x21+x2)
Put x=tant .....(i)
Therefore, y=sin−1(1−(tant)21+(tant)2)
⇒y=sin−1(cos2t−sin2tcos2t+sin2t)⇒y=sin−1(cos2t−sin2t)⇒y=sin−1(cos2t)⇒y=sin−1sin(π2−2t)⇒y=π2−2t
From (i), t=tan−1x
Thus y=π2−2tan−1x
⇒dydx=ddx(π2)−2ddx(tan−1x)⇒dydx=0−211+x2⇒dydx=−21+x2
So, option B is correct.