The correct option is D (3√6,1√6,−2√6)
Given : D.r′s of line L1=(a1,b1,c1)=(1,2,−1)
⇒D.c′s of L1=(l1,m1,n1)=(1√6,2√6,−1√6)
and D.r′s of line L2=(a2,b2,c2)=(2,−1,−1)
⇒D.c′s of L2=(l2,m2,n2)=(2√6,−1√6,−1√6)
As, l1l2+m1m2+n1n2>0
So,
D.r′s of acute angle bisector is : (l1+l2,m1+m2,n1+n2)=(3√6,1√6,−2√6)