Given # is a binary operation on
Q−{1}defined by a∗b=a−b+ab
Commutativity:
for any a,b∈A
We have a∗b=a−b+ab and b∗a=b−a+ba
Since, a−b+ab≠b−a+ab
∴a∗b≠b∗a
So, ∗ is not commutative on A
Associativity:
Let a,b,c∈A(a∗b)∗c=(a−b+ab)∗c
⇒(a∗b)∗c=(a−b+ab)−c+(a−b+ab)c
⇒(a∗b)∗c=a−b+ab−c+ac−bc+abc
a∗(b∗c)=a∗(b−c+bc)
⇒a∗(b∗c)=a−(b−c+bc)+a(b−c+bc)
⇒a∗(b∗c)=a−b+c−bc+ab−ac+abc
⇒(a∗b)∗c≠a∗(b∗c)
so ∗ is not associative on A
Identity Element:
Let e be the identity elements in A
the a∗e=a=e∗aa∈Q−{1}
a−e+ae=a
(a−1)e=0
e=0 ( as a≠1)[so ′0′ si identity element in A]
Inverse of an Element:
Let a be an arbitary element of A as b be the inverse of a.
∵ a∗b=e=b∗a
⇒a∗b=e
⇒a−b+ab=0[∵e=0]
a=b(1−a)
b=a/1−a
since b∈Q−1
So, every elements of A is invertible.