wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Discuss the continuity of the f(x) at the indicated points:
f(x)=|x1|+|x+1| at x=1,1.

Open in App
Solution

f(x)=|x1|+|x+1|

LHL at x=1,

limx1f(x)=limh0f(1h)=limh0[|(1h)1|+|(1h)+1|]=2+0=2

RHL at x=1,

limx1+f(x)=limh0f(1+h)=limh0[|(1+h)1|+|(1+h)+1|]=2+0

Also,
f(1)=|11|+|1+1|=2+0=2

limx1f(x)=limx1+f(x)=f(1)

Now,
LHL at x=1,

limx1f(x)=limh0f(1h)=limh0[|(1h)1|+|(1h)+1|]=0+2=2

RHL at x=1,

limx1+f(x)=limh0f(1+h)=limh0[|(1+h)1|+|(1+h)+1|]=0+2=2

Also,
f(1)=|11|+|1+1|=0+2=2

limx1f(x)=limx1+f(x)=f(1)

Hence f(x) is continuous at x=1 and x=1.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity of a Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon