wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Discuss the continuity of the function f, where f is defined by

Open in App
Solution

The given function f is

The given function is defined at all points of the real line.

Let c be a point on the real line.

Case I:

Therefore, f is continuous at all points x, such that x < −1

Case II:

The left hand limit of f at x = −1 is,

The right hand limit of f at x = −1 is,

Therefore, f is continuous at x = −1

Case III:

Therefore, f is continuous at all points of the interval (−1, 1).

Case IV:

The left hand limit of f at x = 1 is,

The right hand limit of f at x = 1 is,

Therefore, f is continuous at x = 2

Case V:

Therefore, f is continuous at all points x, such that x > 1

Thus, from the above observations, it can be concluded that f is continuous at all points of the real line.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon