Note that f(1/2)=3−6×12=0
Now Lf'(1/2)=limh→0−f(12−h)−f(12)−h=limh→0−[2(12−h)−1]−0−h=2
And, Rf' (1/2)=limh→0+f(12+h)−f(12)h=limh→0−[3−6(12+h)]−0h=−6
Since Rf' (1/2)=Lf′(1/2) so, f isn't differentiable at x=1/2.
OR Here f(−π6)=k.
Also, limx→−π6√3 sin x+cos xx+π6=limx+π6→02sin(x+π6)x+π6=2×1=2
For the continuity of f(x) at x=−π6, we have f(−π6)=limx+π6→0f(x) ∴k=2.