The correct option is
B loge(mn)Note that
ln(1+x)=x−x22+x33−x44+⋯
Now, replace x by −x in above equation we get, −ln(1−x)=x+x22+x33+x44+⋯
Hence, adding the two equations we have,
ln(1+x)+(−ln(1−x))=2(x+x33+x55+⋯)
Therefore, ln1+x1−x=2(x+x33+x55+⋯)
Now substitute x=m−nm+n in above equation to get
ln⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩1+(m−nm+n)1−(m−nm+n)⎫⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪⎭=2[(m−nm+n)+13(m−nm+n)3+15(m−nm+n)5+⋯]
Simplify the L.H.S.
ln(mn)=2[(m−nm+n)+13(m−nm+n)3+15(m−nm+n)5+⋯]=
Hence the correct option is A.