The correct option is B 3n+1−1n+1
We have,
(1+x)n=nC0+nC1(x)+nC2(x)2+...+nCn−1(x)n−1+nCn(x)n
Integrating wrt. x,
(1+x)n+1n+1=nC0(x)+nC1(x)22+nC2(x)33+...+nCn(x)n+1n+1+k
Substitute x=0
1n+1=k
Substitute x=2,
3n+1n+1=nC0(2)+nC1(2)22+nC2(2)33+...+nCn(2)n+1n+1+1n+1
Hence,
nC0(2)+nC1(2)22+nC2(2)33+...+nCn(2)n+1n+1=3n+1−1n+1
Hence, option B is the correct answer.