The correct options are
B 43
D 2a(a2−1)
(a+2)sinα+(2a−1)cosα=(2a+1) ....(1)
We know asinx+bcosx≤√a2+b2
So here, (a+2)sinα+(2a−1)cosα≤√5a2+5
⇒2a+1≤√5a2+5
⇒(a−2)2≤0(∵a<b⇒a2≤b2)
So, a must be 2
Now, put this value in (1)
4sinα+3cosα=5
Substitute 4=rcosβ,3=rsinβ
⇒r=5,tanβ=34
⇒5sin(β+α)=5
⇒sin(α+β)=1
⇒α=π2−β
⇒tanα=tan(π2−β)
⇒tanα=cotβ=43
Also, option D satisfies the value of tanα