The correct option is D 3
Given
Aloge(1+x)−logex−[1(1+x)3+121(1+x)6+131(1+x)9+...]=loge1+(1+x)+(1+x)2 ......(1)
Consider, Aloge(1+x)−logex−[1(1+x)3+121(1+x)6+131(1+x)9+...]
=Aloge(1+x)−logex+loge(1−1(1+x)3)
=Aloge(1+x)−logex+loge((1+x)3−1(1+x)3)
=Aloge(1+x)−logex+loge(x3+3x2+3x(1+x)3)
=Aloge(1+x)−logex+loge(x3+3x2+3x)−3loge(1+x)
=(A−3)loge(1+x)+loge1+loge(x2+3x+3) ....(2)
So from eqn (1) and (2),
(A−3)loge(1+x)+loge1+loge(x2+3x+3)=loge1+(1+x)+(1+x)2
On comparing A−3=0
⇒A=3