α,β are the root of the equation λ(x2−x)+x+5=0. If λ1andλ2 are the two values of λ for which the roots α,β are connected by the relation αβ+βα=45, find the value of λ1λ2+λ2λ1.
Open in App
Solution
The given equation is λx2−(λ−1)x+5=0. ∴α+β=λ−1λ,αβ=5λ Also αβ+βα=45or5(α2+β2)=4αβ or 5[(α+β)2−2αβ]=4αβ or 5(λ−1λ)2=14.5λ or λ2−2λ+1=14λorλ2−16λ+1=0 Its roots are λ1,λ2 ∴λ1+λ2=16,λ1λ2=1 Now λ1λ2+λ2λ1=λ12+λ22λ1λ2 =(λ1+λ2)2−2λ1λ2λ1λ2=256−2=254.