The correct option is
C 2abc(a+b+c)3Δ=∣∣
∣
∣∣(b+c)2a2a2b2(c+a)2b2c2c2(a+b)2∣∣
∣
∣∣
Applying C1→C1−C3;C2→C2−C3, we get
Δ=∣∣
∣
∣∣(b+c)2−a20a20(c+a)2−b2b2c2−(a+b)2c2−(a+b)2(a+b)2∣∣
∣
∣∣
Δ=∣∣
∣
∣∣(b+c+a)(b+c−a)0a20(c+a+b)(c+a−b)b2(c+a+b)(c−a−b)(c+a+b)(c−a−b)(a+b)2∣∣
∣
∣∣
=(a+b+c)2∣∣
∣
∣∣b+c−a0a20c+a−bb2c−a−bc−a−b(a+b)2∣∣
∣
∣∣
Applying R3→R3−(R1+R2),
we get
Δ=(a+b+c)2∣∣
∣
∣∣b+c−a0a20c+a−bb2−2b−2a2ab∣∣
∣
∣∣
=(a+b+c)2ab∣∣
∣
∣∣ab+aca2a2b2bc+bab2002ab∣∣
∣
∣∣
=(a+b+c)2ab.ab.2ab∣∣
∣∣b+caabc+ab001∣∣
∣∣
=2ab(a+b+c)2∣∣∣b+cabc+a∣∣∣
=2ab(a+b+c)2(a+b+c)=2ab(a+b+c)3