The correct option is B 0≤x≤1
The range of inverse cosine function is [0,π].
Hence, for the equation to be satisfied,
cos−1(x)−cos−1(x2)≥0
⇒x≥0 (Considering the graph of cos inverse function)
Hence, x≥0.
Considering the domain of inverse cosine function,
1−x2≥0
⇒|x|≤1
Hence, 0≤x≤1. (Considering the earlier set of values of x)
Let cosα=x2 and cosβ=x for 0≤x≤1
Let 0≤α≤π2, 0≤β≤π2
Substituting the values of α and β in the given equation we get,
cos−1(cosαcosβ+sinαsinβ)=α−β
cos−1(cos(α−β))=α−β
Since, α>β
α−β=α−β
Hence, it is true for 0≤x≤1.
Hence, option C is correct.