The correct options are
A π3 for xϵ[12,1]
D 2cos−1x−cos−112 for xϵ[0,12]
cos−1x+cos−1(x.12+√32√1−x2)=cos−1x+cos−113−cos−1x
For 12≤x≤1
cos−1x+cos−1(x.12+√32√1−x2)=cos−1x+π3−cos−1x=π3
And for 0≤x≤12
os−1x+cos−1(x.12+√32√1−x2)=cos−1x+cos−1x−cos−112=2cos−1x−cos−112