We have 7π8=π−π8 and 5π8=π−3π8
⇒ cos7π8=−cosπ8 and cos5π8=−cos3π8
⇒ cos47π8=−cos4π8 and cos45π8=−cos43π8
∴ L.H.S. =2cos4π8+2cos43π8
=2[(cos2π8)2+(cos23π8)2]
=2⎧⎪
⎪⎨⎪
⎪⎩1+cosπ42⎫⎪
⎪⎬⎪
⎪⎭2+⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩1+cos3π42⎫⎪
⎪
⎪⎬⎪
⎪
⎪⎭2 [∵1+cos2θ2=cos2θ]
=12{(1+cosπ4)2+(1+cosπ4)2}2
=12⎧⎨⎩(1+1√2)2+(1−1√2)2⎫⎬⎭
=12{(1+12+√2)+(1+12−√2)}=32= R.H.S.
Ans: 3