If cos(x−y)+cos(y−z)+cos(z−x)=−32
then sinx+siny+sinz=?
cosx+cosy+cosz=?
cos(x−y)+cos(y−z)+cos(z−x)=−−32
⇒cosxcosy+sinxsiny+cosycosz+sinysinz+coszcosx+sinzsinx=−32
⇒3+2(cosx⋅cosy+.....)+2(sinxsiny+......)=0 .........(1)
we can use
3=1+1+1=(cos2x+sin2x)+(cos2y+sin2y)+(cos2z+sin2z)
so equation (1) becomes,
⇒cos2x+cos2y+cos2z+2cosxcosy+2cosycosz+2coszcosx+sin2x+sin2y+sin2z+2sinxsiny+2sinysinz+2sinzsinx.
⇒(cosx+cosy+cosz)2+(sinx+siny+sinz)2
Now, the sum of two squares can be zero only if each square is itself zero.
cosx+cosy+cosz=0
sinx+siny+sinz=0.