The correct option is C 2θ
cosx=sin3θ−sinθsin22θsinθ+sin2θsinθ
⇒cosx=(3sinθ−4sin3θ)−sinθ(1−cos22θ)sinθ+(2sinθcosθ)cosθ
⇒cosx=3−4sin2θ−(1−cos22θ)2+cos2θ
⇒cosx=3−4(1−cos2θ2)−(1−cos22θ)2+cos2θ=2cos2θ+cos22θ2+cos2θ
⇒cosx=cos2θ
∴x=2θ
Hence, option 'B' is correct.