Let
h(x)=2xtan−1(x)−log(1+x2)
Hence
h′(x)=2tan−1(x)+2x1+x2−2x1+x2
=2tan−1(x).
Now
For
x>0 tan−1(x)>0.
Hence for all x>0,
h′(x)>0
Or
h(x)≥0
Or
f(x)≥g(x). where f(x)=g(x) at x=0.
Now for x<0.
h′(x)=m(x)=2tan−1(x).
Now
m′(x)=21+x2>0
Hence
m′(x)>0 for all x.
Thus m(x)>0 for all x.
Or
h′(x)>0 for all x.
Hence
h(x)>0 for all x.
Hence
f(x)≥g(x) for all x.