The correct options are
A continuous at x=1
C non-differentiable at x=3
D differentiable at x=1
Here f(x)=⎧⎨⎩|x−3|x≥1x24−3x2+134x<1
∴R.H.L at x=1=limh→0|1+h−3|=2
And L.H.L at x=1=limh→0(1−4)24−3(1−h)2+134
=14−32+134=144−32=2
∴f(x) is continuous at x=1
Again f(x)=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩−(x−3)1≤x<3(x−3)x≥3x24−3x2+134x<1⇒f′(x)=⎧⎪
⎪⎨⎪
⎪⎩−11≤x<31x≥3x2−32x<1
R.H.D at x=1⇒−1
And L.H.D at x=1⇒12−32=−1
Hence it is differentiable at x=1
Again R.H.D at x=3⇒1
And L.H.D at x=3⇒−1
Hence not differentiable at x=3