For continuity at x=π/2,we must have Lt= Valuef(x)=1−sinx4(π2−x)2,logsinxlog{1+4(π2−x)2} Put π2−x=torx=π2−t As x→π/2,t→0 ∴Ltx→π/2f(x)=Ltt→01−cost4t2,Ltt→0logcostlog(1+4t2) =Ltt→02sin2t24t2.Ltt→0log(1−t22!+...)log(1+4t2) =Ltt→024.(t/2)2t2.Ltt→0−t22−12(t22)2...4t2−12(4t2)2 =18(−18)=−164
Hence f(π2)=−164.