The correct option is C (−∞,∞)
By the definition of the greatest integer function, [y]=y−k where 0≤k<1. Using this,
f(x)=limn→∞[x2]+[(2x)2]+⋯+[(nx)2]n3
=limn→∞x2−k1+(2x)2−k2+(3x)2−k3+⋯+(nx)2−knn3
=limn→∞(x2+(2x)2+(3x)2+⋯+(nx)2n3−k1+k2+k3+⋯+knn3)
=limn→∞x2+(2x)2+(3x)2+⋯+(nx)2n3−(k1+k2+k3+⋯+kn)limn→∞1n3
=limn→∞x2(12+22+⋯+n2)n3
The second term in this expression is zero. So, the limit becomes
f(x)=limn→∞x2(12+22+⋯+n2)n3=x2limn→∞n(n+1)(2n+1)6n3=x2limn→∞(1+1n)(2+1n)6=x23
This function is continuous everywhere. So the answer is option C.