The correct options are
A x=−1
B x=1
The following inequalities must be satisfied
Simultaneously,
cos(sinx)≥0,∣∣(1+x2)/2x∣∣≤1.For all real
x,−1≤sinx≤1
∴cos(sinx)=cos(y) where
−1≤y≤1Since cos(−θ)=cosθ
∴cos(sinx)=cos(y) where 0≤y≤1 Ist quad.∴cos(sinx)≥0∀xϵR
∴D1=R
Let D2 be the domain of sin−1(1+x22x)
∴∣∣∣1+x22x∣∣∣≤1 or
∣∣1+x2∣∣2|x|≤1But 1+x2 is always +ive∴∣∣1+x2∣∣=1+x2
∴1+x2≤2|x|or1+|x|2≤2|x|or |x|2−2|x|+1≤0 or (|x|−1)2≤0
∴|x|=1 or x=±1
∴D2=−1,1 only∴D=D1∩D2=−1,1 i.e. only two pointsx=−1 and x=1