L=limx→∞ln(x2+ex)ln(x4+e2x)=limx→∞lnex(1+x2ex)lne2x(1+x4e2x)
=limx→∞x+ln(1+x2ex)2x+ln(1+x4e2x)
=limx→∞1+1xln(1+x2ex)2+1xln(1+x4e2x)
Now as x→∞,x2ex→0 and as x→∞,x4e2x→0 [Using L'Hospital's Rule]
Hence L=12