The correct option is B limx→1+f(x)≠limx→1−f(x)
For |x|<1,x2n→0 as n→∞ and for |x|>1,1/22n→0 as n→∞. So
f(x)=⎧⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪⎩log(2+x)if |x|<1limn→∞x−2nlog(2+x)−sinxx−2n+1=−sinxif |x|>112[log(2+x)−sinx]|x|=1
Thus limx→1+f(x)=limx→1(−sinx)=−sin1
and limx→1+f(x)=limx→1log(2+x)=log3