Here R.H.S.=52−loge8
=52−loge23
=52−3loge2
=12(5−6loge2)
The above results (B) and (C) are
loge2=11.2+13.4+15.6+... ...(1)
loge2=1−12.3−14.5−16.7+... ...(2)
The R.H.S. has number 5 and 6loge2 in numerator then multiplying (2) by (5) and then adding in (1), we have
6loge2=5(1−12.3−14.5−16.7+...)+(11.2+13.4+15.6+...)
=5−(52.3−11.2)−(54.5−13.4)−(56.7−15.6)−...
6loge2=5−21.2.3−103.4.5−185.6.7+...
Dividing both sides by -2, then
−3loge2=−52+11.2.3+53.4.5+95.6.7+...
Hence
11.2.3+53.4.5+95.6.7+...=52−3loge2=52−loge8