wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

11.5+15.9+.+1(4n3)(4n+1)=

A
n4n3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
n4n+3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
n4n+1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
n4n+5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A n4n+1
Consider the ith term: ti=1(4i3)(4i+1).
We re-write it as :
ti=14×(4i+1)(4i3)(4i3)(4i+1)=14×(14i314i+1)
Similarly, ti+1=14×(14i+114i+5)
Observe that first time in ti matches with the second term of ti1, while second term of ti matches with the first term of ti+1. This is an instance of telescoping summing. Only the first term of t1 and the last term of tn will remain.
Answer = 14×(114n+1)=n4n+1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon