The correct option is
B n(n+1)2(2n+1)121.3+223.5+…+n2(2n−1)(2n+1)
this can be written as
n∑k=1k2(2k−1)(2k+1)
⇒k2(2k−1)(2k+1)=4k2+1−14(2k−1)(2k+1)
⇒(2k+1)(2k−1)+14(2k+1)(2k−1)
Splitting the fraction, we get
14+14(2k+1)(2k−1)
⇒14+18[12k−1−12k+1]
∴ n∑k=1k2(2k−1)(2k+1)=n∑k=114+18[12k−1−12k+1]
⇒n4+18[1−13+13−15+15−17+......+12n−1−12n+1]
⇒n4+18[1−12n+1]
⇒n4+[2n8(2n+1)]=n4[1+12n+1]
⇒n4[2n+22n+1]=n(n+1)2(2n+1)
Hence, the correct answer is n(n+1)2(2n+1)