The correct option is B 3n+53n+1
Numerator : ∑nk=1k(k+1)2 =∑nk=1(k3+2k2+k)
Denominator : ∑nk=1k2(k+1) = ∑nk=1(k3+k2)
On evaluating each sum we get
Numerator = n(n+1)(n(n+1)4+2n+13+12)
Denominator = n(n+1)(n(n+1)4+2n+16)
Now,
Answer=numeratordenominator=n(n+1)n(n+1)×(n+2)(3n+5)(n+2)(3n+1)=3n+53n+1
Hence, option 'B' is correct.