Find 131+13+231+3+13+23+331+3+5+...16 terms.
The correct options is B 17854
Since, 13+23+.......+n3=n2(n+1)24 .....(i) and
1+3+5+.......+(2n−1)=n2......(ii)
Thus, Tn=13+23+.......+n31+3+5+.......+(2n−1)=n2(n+1)24n2=14(n+1)2
As we know that ∑n2=n(n+1)(2n+1)2........(iii)
Replace n by (n+1),
Hence sum is =∑Tn=14∑(n+1)2
=14⋅(n+1)(n+2)(2(n+1)+1)6
=(n+1)(n+2)(2n+3)24
For required sum put n=16, we get the required sum,
=17(18)(35)24
=17×3×354
=17854