Given
1n+1+12(n+1)2+13(n+1)3+...=a×1n−12n2+13n3−... ....(1)
Consider, 1n+1+12(n+1)2+13(n+1)3+...
=−(−1n+1−12(n+1)2−13(n+1)3+...
=−loge(1−1n+1)
=loge(n+1n)
=loge(1+1n) ....(2)
Now consider, 1n−12n2+13n3−...
=loge(1+1n)
So,from equation (1),(2) and (3), we get
loge(1+1n)=aloge(1+1n)
⇒a=1