A=30∘
To Prove: 1+sin2A+cos2AsinA+cosA=2cosA
L.H.S: 1+sin2A+cos2AsinA+cosA
= 1+sin600+cos600sin600+cos600
= 1+√32+12√32+12
= 2+√3+12√3+12
= 2+√3+1√3+1
Multiply and divide by √3−1
(2+√3+1)(√3−1)(√3+1)(√3−1)
2√3−2+3−√3+√3−13−1
2√32
=
√3
R.H.S: 2cosA=2cos300=2√32=√3