Given 21!+43!+65!+87!+...to∞=12a!+45!+6b!+...to∞ .....(1)
Consider, 21!+43!+65!+87!+...to∞
Tn=2n(2n−1)!
Tn=2n−1+1(2n−1)!
⇒Tn=1(2n−2)!+1(2n−1)!
⇒Tn=e+e−12+e−e−12
⇒Tn=e
So, eqn (1), becomes
e=12a!+45!+6b!+...to∞
⇒2a!+45!+6b!+...to∞=1e
⇒2a!+45!+6b!+...to∞=1−11!+12!−13!+14!−15!+16!−17!+....∞
⇒2a!+45!+6b!+...to∞=23!+45!+67!+....∞
On comparing, we get
a=3,b=7
⇒b−a=4