2x2x2+5x+2>1(x+1)
⇒2x2x2+5x+2−1(x+1)>0
⇒2x(x+1)−2x2−5x−2(2x2+5x+2)(x+1)>0
⇒−3x−2(2x2+5x+2)(x+1)>0
⇒−(3x+2)(2x2+4x+x+2)(x+1)>0
⇒−(3x+2)(2x+1)(x+2)(x+1)>0
⇒x∈(−2,−1)∪(−23,−12)
Therefore, number of integral solutions =0.