The correct option is
C xx2−x+1−1x+23x−1(1−x+x2)(2+X)=A(2+X)+Bx+C(x2−x+1)
finding values of A, B, C
3x−1=A(x2−x+1)+(Bx+C)(2+x)
Comparing the co-efficients of x A, B, C we get
Comparing x2 co-efficient we get
A+B=O−−(1)
x co-efficient
3=−A+2B+C−−(2)
1 co-efficient
−1=A+2C−−(3)
solving the equations
we get
A=−1;B=1
C=0
we get −1(2+X)+x(x2−x+1)