We know that
(1+x)n=Cn0+Cn1x+Cn2x2+Cn3x3.......+Cnnxn−(1)(1−x)n=Cn0−Cn1x+Cn2x2−Cn3x3.......+(−1)nCnnxn−(2)
Integrating both sides of eq(1) under limits 0 to 1 we get
∫10(1+x)ndx=Cn0∫10dx+Cn1∫10xdx+......+Cnn∫10xndx⇒(1+x)n+1n+110=Cn0+Cn12+Cn23+......+Cnnn+1−(3)
Integrating both sides of eq(2) under limits 0 to 1 we get
∫10(1−x)ndx=Cn0∫10dx−Cn1∫10xdx+......(−1)n∫10Cnnxndx⇒−(1−x)n+1n+110=Cn0−Cn12+Cn23+......(−1)nCnnn+1−(4)
Adding (3) & (4) we get
⇒(1+x)n+1n+110−(1−x)n+1n+110=2(Cn0+Cn23+Cn45.......)⇒2n+1−1n+1+1n+1=2(Cn0+Cn23+Cn45.....)⇒2n+1n+1=2(Cn0+Cn23+Cn45.....)∴Cn01+Cn23+Cn45.......=2nn+1