cosA1−tanA+sinA1−cotA is equal to
The correct option is B (sinA+cosA)
Given expression is cosA1−tanA+sinA1−cotA
Multiply first term by cosAcosA and second term by sinAsinA,
=(cosA1−tanA×cosAcosA)+(sinA1−cotA×sinAsinA)
=cos2AcosA−(sinAcosA×cosA)+sin2AsinA−(cosAsinA×sinA)
(Since, tanA=sinAcosA, cot=cosAsinA)
=cos2AcosA−sinA+sin2AsinA−cosA
=cos2AcosA−sinA−sin2AcosA−sinA
=cos2A−sin2AcosA−sinA
=(cosA−sinA)(cosA+sinA)(cosA−sinA)
=cosA+sinA
Hence, cosA1−tanA+sinA1−cotA=cosA+sinA