d2ydx2+cosxdydx+4ycosc2x=0 it being given that z=logtanx2.
A
d2ydz2+4y=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
d2ydz2−4y=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
d2ydz2+2y=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
d2ydz2−2y=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ad2ydz2+4y=0 Given z=logtanx2 ∴dzdx=cosecx⋯(1)[∵∫cosecxde=logtanx2] dydx=dydz.dzdx=cosecxdydz=1sinxdydz ⇒sinxdydx=dydz Differentiating w.r.t x sinxd2ydx2+cosxdydx=d2ydz.dzdx