The correct option is
B ey=c.exp(−ex)+ex−1dydx=ex−y(ex−ey)
dydx=exey(ex−ey)
eydydx=e2x−exey
eydydx+exey=e2x
Put ey=v
eydydx=dvdx
eydvdx+vex=e2x
which is a linear differential eqn with v as dependent variable.
Here, P=ex;Q=e2x
Integrating factor I.F.=e∫exdx=eex
So, the solution of given differential eqn is
v.eex=∫eexe2xdx+C
Put ex=t in the above integral
⇒exdx=dt
v.eex=∫ettdt+C
⇒eyeex=tet−et+C
⇒eyeex=exeex−eex+C
⇒ey=ex−1+Ce−ex