dydx=2y+x+12x+4y+1
Here, a1a2=12
b1b2=24=12
⇒a1a2=b1b2
Put x+2y=v
1+2dydx=dvdx
⇒dydx=12(dvdx−1)
So, eqn (1) becomes
⇒12(dvdx−1)=v+12v+1
⇒dvdx=4v+32v+1
⇒∫(2v+1)dv4v+3=∫dx
⇒12∫(4v+3−1)dv4v+3=x+c
⇒12∫dv−12∫dv4v+3=x+c
⇒12v−18log(4v+3)=x+c
⇒4(x+2y)−log(4x+8y+3)=8x+k
On comparing with given solution
a=2,b=8
⇒ba=2