The correct option is A 3
Given differential equation is
dydx=x2+xyx2+y2
Put y=vx
dydx=v+xdvdx
So, the given differential equation becomes
v+xdvdx=1+v1+v2
xdvdx=1−v31+v2
(1+v2)dv1−v3=dxx
(1+v2)dv(1−v)(1+v2+v)=dxx
Integrating both sides ,
∫(1+v2)dv(1−v)(1+v2+v)=∫dxx .....(1)
Now, we will resolve (1+v2)(1−v)(1+v2+v) into partial fractions
(1+v2)(1−v)(1+v2+v)=A(1−v)+Bv+C(1+v2+v)
⇒1+v2=A(1+v2+v)+(Bv+C)(1−v)
On comparing , we get
A−B=1
A+C=1
A+B−C=0
Solving these equations, we get
A=23,B=−13,C=13
∫(1+v2)dv(1−v)(1+v2+v)=∫23(1−v)dv−∫v−13(1+v2+v)dv
∫(1+v2)dv(1−v)(1+v2+v)=23log(1−v)−16∫2v+1−31+v2+vdv
∫(1+v2)dv(1−v)(1+v2+v)=23log(1−v)−16∫2v+11+v2+vdv+12∫11+v2+vdv
Put v2+v+1=t
⇒(2v+1)dv=dt
∫(1+v2)dv(1−v)(1+v2+v)=23log(1−v)−16∫1tdt+12∫1(v+12)2+(√32)2dv
⇒∫(1+v2)dv(1−v)(1+v2+v)=23log(1−v)−16logt+1√3tan−1(2v+1√3)
∫(1+v2)dv(1−v)(1+v2+v)=23log(x−y)−23logx−16log(x2+y2+xy)+1√3tan−1(2y+xx√3)
Put this value in (1), we get
23log(x−y)−23logx−16log(x2+y2+xy)+1√3tan−1(2y+xx√3)=logx+logc
⇒1√3tan−1(2y+xx√3)=53logx−23log(x−y)+16log(x2+y2+xy)+logc
⇒logcx5/3(x2+y2+xy)1/6(x−y)2/3=1√3tan−1(2y+xx√3)
On comparing, we get k=3