The correct option is C 4
dydx=x+y+12x+2y+3
Put x+y=v
1+dydx=dvdx
⇒dvdx−1=v+12v+3
⇒dvdx=3v+42v+3
⇒(2v+3)dv3v+4=dx
Integrating both sides,
∫(2v+3)dv3v+4=∫dx
⇒13∫2(3v+4)dv3v+4+13∫1dv3v+4=x+logc
⇒23v+19log3v+4=x+logc
⇒19log(3x+3y+4)−logc=13(x−2y)
⇒log(x+y+43)c=3(x−2y)
x+y+43=ce3(x−2y)
Comparing with given solution, we get
k=4